Search

150mm alive & kicking

An article written by Mike Rosa, Applied Materials for Nanochip newsletter – Did you think chip making on 150mm wafers was a thing of the past? Think again. Many of the megatrends shaping our collective futures—mobility, autonomous driving and electric vehicles, 5G wireless communications, augmented- and virtual reality (AR/VR), and healthcare—depend on innovations created on the 150mm wafer size.

While attention is often riveted on the race to the leading-edge nodes, today important advancements in power devices, photodetectors and waveguides are being enabled by materials such as silicon carbide (SiC) and gallium arsenide (GaAs) wafers at 150mm, or even 100mm.

PHOTONICS DRIVE GaAs
GaAs has been used for decades in laser and LED technologies employed in applications such as photocopiers, DVD players and even laser pointers. In recent years, LEDs have propelled a further developmental push in compound semiconductor technologies. New advancements are coming from two classes of photonics applications: laser sources and waveguide technologies for data networks; and laser diode and photodetector technologies for advanced 3D imaging.

Devices fabricated on GaAs substrates have often been relegated to batch-toolstyle manufacturing due in part to the cost-sensitive nature of applications, notably LED lighting. Many of the traditional batch process steps involved the MOCVD growth of stacked material layers, with no intermittent lithography or etch processes until the very end of device fabrication when device contacts were created and singulation was performed.

While much of that remains the same today, volume, yield and price pressures require some specific types of devices such as vertical cavity surface emitting lasers (VCSELs) to be manufactured using single-wafer processes where possible (figure 1). This is a departure from the traditional batch processing at a time when these III-V material technologies are finally working their way into broader consumer markets through applications like facial recognition… Full article

Source: www.appliedmaterials.com 

 

up