Search

Quantum sensors for Satellite control enable high-speed connectivity

A German consortium composed of Q.ANT, Bosch, TRUMPF, and the German Aerospace Center (DLR) plans to use quantum technology to permanently enhance satellite measurement stability. Reliable transmission of satellite communication signals can only be achieved by constantly maintaining high-precision attitude control of satellites in their orbits. If a satellite moves out of position, the signals get weaker.

The partners will develop space-qualified attitude sensors in a project will improve internet access, particularly in remote regions, TRUMPF said in a press release. The aim is to use these quantum technology-based sensors to achieve high-precision attitude control of miniaturized satellites. The sensors’ ability to maintain precise orientation of the satellites in relation to each other will enable high-speed data connectivity.

Quantum sensors are particularly suitable for deployment in satellites since they provide reliably accurate measurement results and excellent performance in a compact, low-weight package. This solution can keep satellites correctly oriented in space over a period of years.

The DLR hopes to launch its first miniaturized satellites equipped with quantum technology in five years. “The goal of developing European quantum sensors is to achieve greater independence from the global market,” the press release said.

This strategic partnership shows the tremendous potential that lies in the collaborative development of pioneering technologies,” said Michael Förtsch, CEO of Q.ANT. “The deployment of quantum technology in the aerospace industry is a huge opportunity for Germany as a major industrial hub.”

Beyond their use for satellites, attitude, and position, sensors that harness quantum effects can be used for autonomous driving systems and indoor navigation technologies in factories, logistics warehouses, and other facilities.

Q.ANT, which is a wholly owned subsidiary of TRUMPF, will lead the development project and develop the overall sensor concept. It is also responsible for integrating the various sensor components and keeping them in precise and stable alignment with each other to ensure they function smoothly and reliably in the satellite.

up