Opto-refrigerative tweezers overcome a hot problem

A tweak to optical tweezer technology introduced by researchers at the University of Texas at Austin fixes the problem of heat that affects the tool. The prolonged interaction with the laser beam can alter molecules and particles or damage them with excessive heat in optical tweezer technology. The tweak could lead to new research and simplify processes for using optical tweezers.

The breakthrough that avoids overheating comes out of a combination of two concepts: the use of a substrate composed of materials that are cooled when a light is shined on them (in this case, a laser), and thermophoresis, a phenomenon in which mobile particles will commonly gravitate toward a cooler environment. The cooler materials attract particles, making them easier to isolate while also protecting them from overheating. By solving the heat problem, optical tweezers could become more widely used to study biomolecules, DNA, diseases, and more.