Self-Calibrated Optical Chip supercharges connectivity

A self-calibrating photonic integrated circuit (PIC) developed by Monash University and RMIT scientists holds immense promise for the development of artificial intelligence and optical networking. The researchers said that their technology offers a replacement option for bulky 3D optics with a wafer-thin slice of silicon.

The collaborators cited safer driverless cars capable of instantly interpreting their surroundings, the use of AI to more rapidly diagnose medical conditions, increasing the speed of natural language processing, and helping to create smaller switches for reconfiguring optical networks as applications that the work supports.

The self-calibrating programmable photonic filter chip features a signal processing core and an integrated reference path for self-calibration.

Self-calibration is significant because it makes tunable photonic integrated circuits useful in the real world; applications include optical communications systems that switch signals to destinations based on their color, very fast computations of similarity (correlators), scientific instrumentation for chemical or biological analysis, and even astronomy,” said Arthur Lowery, lead investigator and Monash University ARC Laureate Fellow Professor.