Search

What works best for chiplets

Not all chiplets are interchangeable, and options will be limited – An article written by Anne Meixner for Semiconductor Engineering, in collaboration with Gabriela Pereira from Yole Group.

The semiconductor industry is preparing for the migration from proprietary chiplet-based systems to a more open chiplet ecosystem, in which chiplets fabricated by different companies of various technologies and device nodes can be integrated in a single package with acceptable yield.

To make this work as expected, the chip industry will have to solve a variety of well-documented technical and business issues, and it will have to rein in some of the grander visions of what’s possible — at least initially. The basic challenge is aligning domain-specific performance demands of end systems, which contain a growing number of chiplets, with the assembly and packaging capabilities and methodologies of IDMsfoundries, and OSATs. This includes the creation of assembly development kits (ADKs) that are roughly the equivalent of process development kits (PDKs), which today are codified with manufacturing specifications.

A PDK provides the appropriate level of detail needed to develop planar chips, marrying design tools with fab processes to achieve a predictable outcome. But making this work for an ADK with heterogeneous chiplets is many times more complex. Design and assembly teams need to manage thermal, mechanical, and electrical co-dependencies that cause electrical and mechanical stress, resulting in warpage, reduced yield, and reliability issues under real-world workloads. Layered on top of this the business and legal issues related to packaging of different devices from different manufacturers.

“Chiplets are a growing trend, especially in the HPC and networking segments, with potential to scale to other applications,” said Gabriela Pereira, technology and market analyst for semiconductor packaging at Yole Intelligence. “The industry has understood that high-end advanced packaging technologies are needed to connect them — but that’s much more complex than it seems. Connecting chiplets requires the design of high-bandwidth interconnections at the package level, which can take different forms — e.g., 2D, 2.5D or 3D — while ensuring that the thermal and power requirements are fulfilled.”.

… Read the full article HERE.

up